
MoNA SpecTcl Guide

A. Ratkiewicz & W. A. Peters
National Superconducting Cyclotron Laboratory

February 13, 2006

1 Introduction

This guide is intended to give you an idea of how to use SpecTcl to analyze data that MoNA has collected.
This guide is written for the analysis of data taken from cosmic rays, thus this may not be useful to you.
However, it should give you an idea of what’s involved in a fairly simple application of SpecTcl, which is
all it’s intended to do. Please read the NSCL documentation and general user guide [1] to familiarize
yourself with the basic commands; especially the spectrum and gate commands.

1.1 MoNA Parameters

MoNA has, for the TDC’s and QDC’s, 576 raw and 576 calibrated parameters from the PMT’s. These are
then used to calculate a few parameters for each of the 144 bars:

Xpos, Tmean, Qmean

Which are, in turn, used to calculate the Hit parameters.

1.1.1 Hit Parameters These parameters are not as useful as one would like since the code is written to
scan the whole MoNA array (starting with A0 to I15) and labels the first event with two valid TDC
channels as hit 1, and so on.

X_hit, Y_hit, Z_hit, ToF_hit, Theta_hit, Phi_hit

Pseudo parameters have been made to calculate the time-ordered hits[2] and should be used for more
advanced analysis.

2 Configuration files

There are plenty of files sourced by the SpecTcl code when it begins. Many are not to be adjusted in any
way because they contain long lists of MoNA variable names and special tcl operations that are used by
the underlying cpp code. In general, those files will get copied to your work space and never need to be
adjusted or edited. There are a few files that contain calibrated variables that get set once for each
experiment and then a few that contain adjustable variables to set as you see fit to best analyze the data for
a particular run number.

1

2.0.2 SpecTclRC.tcl Make sure that the directory that contains the spectcl.scr file to launch
SpecTcl also contains a SpecTclRC.tcl file and is edited to source the SpecTcl housed in a
/user/mona/mona/spectcl_shared directory. You may also set your WorkDirectory and
EventDirectory at the end of this file. The SpecTcl_Driver.tcl file is sourced from this file.
The Driver runs the Tk graphical user interface that displays the buttons and such we call the
SpecTcl Control Window.

2.1 MoNA Config Directory

The ˜/mona/config directory contains many of the files that control the configuration settings for
SpecTcl. The most import ones are:

2.1.1 MoNA setup run.tcl This file contains many permanent lists and a few fitting flags and
variables. The most important parts are the TDC and QDC setup lists that get read into the scriptable
SpecTcl code to configure the Readout and SpecTcl codes. It also has the CFD lists of addresses and
configuration file names for all 18 CFD’s.

The top of the file has variables that can be edited for each experiment. Here we have a series of fitting
flags:

QDC_thres_flag
QDCfitted
TDCfitted
Xposfitted
Tmean_indie_offset

These are set to "true" after the appropriate calibration or fitting code is completed[3].

The tmean_offset variable is a global time offset for all Tmean parameters of all bars and should be
set from a MoNA gamma timing run or to some reasonable value to start (like 333.0 ns).

The MoNA_Z_pos variable should be set to the distance from the center of the reaction target position to
the center of MoNA bar A8 (in centimeters).

The MoNA_hits variable is read in to create that many hit parametes and spectra. The default is 20
because the time-sorting scripts[2] use 20 hit parameters as inputs into the pseudos.

2.1.2 MoNA hardware run.tcl This file sources the MoNA_setup_run.tcl file and creates the
scriptable data packets and commands to configure the VME modules (TDC’s, QDC’s and, Scaler’s).
Different QDC threshold lists are sourced if the QDC_thre_flag is set to "true". This file should not
need adjusting unless the MoNA hardware changes (like adding neutron cans).

2.1.3 MoNA dynamic var run.tcl This file sources all the default variable settings and then the
calibrated or fitted ones if the appropriate flags are set in MoNA_setup_run.tcl. This file also creates
all the non-raw MoNA parameters from large lists that are defined in MoNA_Param_run.tcl. It does
not need editing.

2.1.4 MoNA spectcl run.tcl This file is directly sourced by the .scr script file that launches SpecTcl.
It’s main function is to define the data packets to unpack in SpecTcl that are defined in the hardware file,
for example:

2

unpack add mona
unpack add bitpattern

It does this by first sourcing the MoNA_hardware_run.tcl file and the
MoNA_dynamic_variables files. It also sources the MoNA_Param_run.tcl file to create all the
raw parameters from it’s lists. This file is replaced by Tandem_spectcl.tcl for the Tandem version of
SpecTcl[4].

2.1.5 MoNA readout run.tcl This file is similar to MoNA_spectcl_run.tcl but tells the Readout
code which packets to fill, for example:

readout add mona
readout add bitpattern

3 Running SpecTcl

There must be a SpecTcl executable created that can be run from your user account or an experimental
account. These executables have been traditionally housed in the /user/mona/spectcl_shared
directory and accessed through the local ˜/mona/daq/spectcl script files that source the local
˜/mona/config directory filled with relevant settings and calibration factors.

3.1 Open SpecTcl

Open SpecTcl by either clicking the button on a DAQ machine display of a current experimental account,
or executing the script by typing:

> ./run_spectcl.scr

or the equivalent script file in the ˜/mona/daq/spectcl directory. You will see the following windows:

3

• The MoNA SpecTcl Control window:

• The Xamine window:

4

• The Console Shell:

• The TkCon window:

The TkCon window should have listed many configuration settings including which fittings flags are set
and whether or not you are using calibrated slope/offset values for QDC, TDC, Tmean, and Xpos
parameters. This listing of settings finishes with Done,Done. The code also lists the data packets it
recognizes like maybe Level2 (when the bitpattern data packet is used).

Look at the right side of the SpecTcl Control window and find the WorkDir and EvtDir. The first
should be set to the current working/spectcl directory, usually ˜/mona/daq/spectcl. The second
should be set to the directory containing the event files you wish to analyze (maybe
˜/stagearea/complete). If they are not set, or set incorrectly, set them using the TkCon window:

% set WorkDirectory ˜/mona/daq/spectcl
% set EventDirectory ˜/stagearea/complete

5

3.2 Creating Spectra

Use the spectrum in-line command in the TkCon window to create spectrum from any parameters. To
view a list of the parameters type:

% parameter -list

Or press the List Parameters button on the bottom of the SpecTcl control window. If you forget the syntax
just type:

% spectrum

and the error message will display the syntax it’s looking for.

When you’ve made a spectrum of a parameter, it must be bound to SpecTcl to view on Xamine, so type the
command:

% sbind -all

There are a few pre-set buttons to create and bind many of the commonly used spectra types. These buttons
are on the left side of the SpecTcl control window. For viewing the X position of each bar, you need to
create position spectra; do this by clicking the Create Pseudo Spec button on the SpecTcl Control window.
After you’ve done this, you can press the List Spectra button to list all the current spectra loaded into
SpecTcl and verify that spectra with the group name Xpos exist.

3.3 Configuring Xamine

In the Xamine window, click on the Geometry button in the lower left hand corner of the screen. Change
the configuration of the resulting pop-up dialogue to 4x4. Then click the Display + button and use the
Apply command in the pop-up window to add desired spectra to the Xamine cells. Using the Okay
command will close the pop-up window after inserting the selected spectra.

You can save any Xamine window configurations by selecting the Write Configuration from the
Window menu on top. be sure to save it as a .win file in the /win directory. You may also read in
previously saved configurations, but you must be sure the included spectra have been bound to SpecTcl
first. For this example, select the configuration file \pseudo_win\Xpos_A.win to display all the Xpos
spectra for layer A.

3.4 Attaching Data

In the SpecTcl Control window, click on Attach to File and select a run to read in. Once this is done,
SpecTcl will begin analyzing the data. Let it run for a short while so that you have an idea where the peaks
and valleys in your data will be.

If you do not need to read in the whole event file, and when you’ve got an idea where the peaks and valleys
in your data are, click on the Stop Analysis button.

6

3.5 Setting Up Gates

Back in Xamine, double click on first cell (the cell in the upper left-hand corner of the window) to zoom in
on it. This should be Xpos A0. Now click the Cut button in the lower right hand corner. Here, we are going
to tell SpecTcl that we want gate on events that hit in a certain part of the tube. For this example choose (for
this bar) the region between -80.0 cm and -60.0 cm. Move the cursor to -80 cm on the spectrum in Xamine
and click once, then move to -60 cm and click again. This will fill the coordinates into the appropriate box
in the Cut pop-up window. Select the name box and label the gate, gate1 and then select Ok to accept.
Cuts can also be declared with the gate in-line command in the Tk Con window (see Ref[1] for details).

MoNA is set into a right-handed coordinate system with positive z in the direction of the moving beam and
positive y as the up direction (toward ceiling). This means positive x is to the left when looking at the front
of MoNA (layer A). Xamine displays spectra from lower value to higher value, so the range
{{-150 150 301}} will have the correct coordinates, but left and right will be reversed on the screen.
Just image you are viewing the Xpos of a bar from behind MoNA (where spdaq16 sits). This way positive
x is to the right of the viewer since you are looking in the negative z direction.

In the TkCon shell, type:

% gate -list

to verify that the gate has been created. Note that if you’ve made a mistake in gate definitions, you can use
the gate -delete gatename command to zero out the gate. This command does not remove the gate
from SpecTcl, it just gets rid of all its arguments. This is handy; it allows you to change gates at the last
minute without changing much else.

Now do the same thing for the last cell (Xpos A15) in Xamine as you did for the first, but use different
points for the cut (use the positive value for the second, since you’re trying to get a feel for how the ray
travels through MoNA). We will gate the middle bars to see the cosmic rays travel from top left to bottom
right through layer A.

Finally, you need to set up an and gate. If you called the first gate for Xpos A0 gate1 and the one for
Xpos A15 gate2, then to create an and gate going to the TkCon shell and typing:

% gate -new andgate * {gate1 gate2}

Here, gate -new andgate tells SpecTcl that you are making a new gate called andgate, the * tells
it that the gate is a logical and, with {gate1 gate2} as the arguments, so that the gate is only true if
both gate1 and gate2 are true. This is the only way to apply more than one condition on a spectrum. An
and gate using * can depend on many other gates; just list all the ones you want to include inside the {}
brackets.

3.6 Copying Spectra

Now that you’ve got your gates set up, you want to make a copy of all the spectra you’ll be applying them
to. This is mainly for safety reasons; you don’t want to change your source data by gating it. Go to the
TkCon shell and type:

% spectrum -new xpos_a0_gate1 1 {Xpos_A0} {{-150 150 301}}

7

Here, you’re making a new spectrum named xpos_a0_gate1 from parameter Xpos_A0 with a range of
-150 to +150 cm and a resolution of 301 bins.1 Repeat this for gate2 using the name xpos_a15_gate2
and for the middle 14 spectra (Xpos A1 to Xpos A15) with _andgate in the name because we will apply
the new andgate to them all. Next you need to bind them using the sbind -all command(as noted
above).

3.7 Displaying New Spectra

In the Xamine window, use the Display+ button to view all the new spectra you’ve just bound. At this
point, it’s a good idea to save your configuration, name it something unique, and save it. You’ve just saved
the setup that’s currently in Xamine; you have not saved the spectra names or the gates, so if you’ve done a
lot of work or feel like you might want to revisit the these settings for this experiment, now might be a
good time to go to the TkCon shell, press h, and copy/paste the result to a text file (See Section 5).

3.8 Applying Gates

Go the TkCon shell and type:

% apply gate1 xpos_a0_gate1

to tell SpecTcl that you’re applying gate1 to the spectrum called xpos_a0_gate1. Now repeat to apply
gate2 to the xpos_a15_gate2 spectrum. The apply command can have a whole list of arguments so,
to apply the andgate to all the middle 14 Xpos spectra you just made, you only need one line:

% apply andgate xpos_a1_andgate xpos_a2_andgate ...

1It is nice to select a bin number that is a multiple of the range you’ve selected plus one so the bin edges line up with the values.

8

4 Analyzing Data

Go to the SpecTcl Control window, click on the red Clear Spectra button. 2 Now re-attach your data file.
SpecTcl will start analyzing the data. Now’s a good time for a coffee break; a typical run can have over
1,000,000 buffers to analyze. When it’s done, the Spectra will look something like this:

Notice the peaks seem to move from one side to the other as you look at successive bars. Most of these
event are muons that pass through the left side of bar A15 through the right side of bar A0. So the overall
pattern will look like a diagonal path through layer A.

4.1 Exporting Data

When SpecTcl has finished analyzing the data, you might want to export it for later use. Go to the SpecTcl
Control Window and click the Write Any Spectra button on the left. Select the spectra you would like to
export, and don’t forget to give it a unique name. The default format is ascii which works well with
Excel. You may select any format you want to use. This will then save the swrite file in the spectra
directory.

4.2 Importing into Excel

Open Excel, click on Data, go to Get External Data, and select Import Text File. Change
the file-type option to all files (*.*), and select your ascii file. In the first frame, just click next.
In the following box, check both the space and other delimiter boxes. In the other box type a closed
parentheses). This will turn every space and parentheses read in by Excel into a new column space, which
makes life much easier for you. Now click finish and select the first cell to start the import.

Next, if you’ve only imported one spectrum per Excel sheet and you want to automatically turn these
columns into calibrated and compressed columns, you must first set your macros security to medium. Do

2Note that it’s very important to clear spectra whenever you make a change to the spectra or the gates.

9

this by selecting the tools -> options -> security -> macro security menus and then
setting the macro security to medium. Now open the
/projects/proj1/mona/docs/spectcl-read-macro_calibrate.xls Excel file that has
the correct macros in it, and select the Enable Macros option. Once this file is opened in Excel go back to
your data sheet and you can run the macro test2 on your imported data. This will create many new
columns and fill any missing zero’s from the original histogram. One column fills with the calibrated values
and then the following ones are the same data re-histogramed with x2 and higher compression factors.

5 Simplifying

5.1 Settings Files

Now you can repeat the same gates and commands you just did for layer B. However, you’re not going to
do all that tedious typing again. Instead, you’re going to put the bulk of your commands in a text file, and
source the file from the TkCon shell. This will save you time if we ever want to revisit the analysis.

Open a text editor (use Kwrite or emacs). Emacs is prefered by people with a strong Unix background. If
you are not entirely comfortable with it, use Kwrite; Kwrite’s a lot like notepad, so you shouldn’t have any
problems.

When your text editor opens, go to the TkCon window, type h and then highlight the commands you used
to create and apply the gates for layer A. Now select Copy from the TkCon Edit menu. In the editor select
Paste, then edit the commands for layer B instead of layer A. You must delete the line numbers that the h
command inserts in front of the lines. Don’t forget to type sbind -all at the end of the file if you create
any spectra within. This is also a good place to save the in-line commands to create the gates you use (they
must be created before they can be applied). Save the file in the settings directory as a .tcl file. To
source the file and run the commands go back in the TkCon window, type:

% source settings\filename.tcl

This will read the file and run the commands between each <return> as if typed one at a time as an
in-line command into the TkCon Window. If there is a syntax error in the file, the process breaks and all the
commands after the error are not read in. In that case, just re-edit the file, comment out any commands
before the error, and source it again.

5.2 Creating Custom Pseudos

In the course of your analysis, you may find that you need to create a spectrum that’s a calculation of two
or more calibrated parameters (or any calculation not done within SpecTcl already). This technique will
work for any reasonable arithmetic operation. A pseudo parameter is really just a procedure implemented
while filling the SpecTcl parameters. Now you can finally tell SpecTcl to do whatever it was you wanted it
to do. It can output any value you choose into a new parameter that can be put into a spectrum like the
regular parameters. Three commands are involved:

5.2.1 Parameter First, you need to define a new parameter. It’s a good idea to pick a high number for
the id (higher then 5000), as this command won’t work properly and will cause problems down the road if
you assign an id that’s already in use.

10

5.2.2 Pseudo Now you need to define the pseudo. The syntax here is a bit more complex:

% pseudo name {parameter1 parameter2 ...}
{if {$parameter1isValid && $parameter2isValid ...}

{return [expr($parameter1 * $parameter2)/$parameter2] }
else {return -1}}

Note that the name of the pseudo should match the name of the parameter associated with it that you just
made.

The syntax here is not intuitive if you’re not experienced in TclTk, so let’s take a minute to discuss it. First,
note the {parameter1 parameter2 ...} part of the command. Remember when we made copies
of existing spectra (section 3.6), we had to tell SpecTcl what we were copying? As you might suspect, this
is the same idea. Be warned, though, any parameter you want to use in the pseudo calculation must be
declared here.

The next part of the pseudo command is an if{} statement, followed by the expression to return if true
and the expression to return if false.

The {if {$parameter1isValid && $parameter2isValid ...} in the example is a logical
and; all parts must be true in order for the conditional to be true. This particular statement wants valid
parameters; the $ sign indicates that we’re looking at the value of the parameter, and isValid demands
that there be something assigned to it (note that this is case sensitive, so pay close attention to your
declarations).

If the terms of the conditional are met, then the
{return [expr ($parameter1 * $parameter2)/$parameter2] } expression will be
evaluated. Note that we’re telling SpecTcl to return the value of an expression [expr ...]. Again we
insert a $ in front of the parameter name to use it’s value.

Notice that if the conditions of the if statement are not satisified, some other number is returned. You
should make this value marginally outside the spectrum you’re defining, so you don’t see bad data in your
spectrum.

5.2.3 Spectrum Finally, you need to make a new spectrum to display the pseudo parameter you’ve just
defined. The syntax is identical to creating a spectrum for a gated spectrum, as above, just use the pseudo
parameter’s name. The command is:

% spectrum -new name 1 {pseudo_name} {{-150 150 301}}

Some very useful pseudo scripts have been written by A. Ratkiewicz[2]. One sorts all the MoNA hits by
time, within a set neutron-time gate. Another calculates the angles and velocities between internal MoNA
hits (like between the first and second hit) to help with multiple neutron analysis.

5.3 Filtered Data

SpecTcl allows one to filter out only selected parameters that can then be read in to a different SpecTcl
quicker than re-reading all the raw parameters and processing them. This is useful if you have a large set of
data runs that take a long time to read, and if you’ve calibrated all your parameters and are only concerned

11

with a small subset of the total parameters made. Since MoNA has over 1500 standard parameters (not
including the hit parameters), it may be wise to crate a filtered file for the data. This process requires a
special SpecTcl code that uses the filtered file as an input, and has the filtered parameters defined. For more
information about this see Ref[1].

5.4 Useful Tips

• In a unix shell, or the TkCon window, the up arrow key will display the last command. pressing
the up arrow twice will display the command before the last, etc.

• In a unix shell, or the TkCon window, typing h will give you a history of past commands.

• Typing the command with no arguments will display an error message illustrating the expected
syntax, for example: % gate.

References

[1] R. Fox, SpecTcl - User’s Guide October 28, 2003. NSCL.
http://docs.nscl.msu.edu/daq/spectcl/users guide.htm

[2] A. Ratkiewicz, W.A. Peters, Time Sorting Pseudos 2005. NSCL.
/projects/proj1/mona/reports

[3] J. Miller, M. Strongman, L. Elliott, D.B. Hecksel, M.M. Kleber, P.J. Voss, T. Pike, R. Pepin,
A. Ratkiewicz, W.A. Peters, MoNA Calibration 2005. NSCL.
/projects/proj1/mona/reports

[4] W.A. Peters, Tandem SpecTcl Guide 2006. NSCL.
/projects/proj1/mona/reports

12

